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We give upper bounds on the decay of correlation functions for long-range 
SO(N)-symmetric spin-glass models in one and two dimensions using 
McBryan-Spencer techniques. In doing so we extend recent results of Picco. 
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1. I N T R O D U C T I O N  

Spin-glass models are generally constructed by taking random interactions 
with zero average. The occurrence of both ferro- and antiferromagnetic 
terms can give rise to cancellation effects. In particular when the interac- 
tions are independent, it is known that their effective range tends to be 
shorter than in the corresponding nonrandom case. Examples of this 
phenomenon are the existence of the free energy density for interactions 
which are square summable but not absolutely summable, (1 3) and the 
absence of symmetry breaking in one- and two-dimensional models (4 lO) for 
which the corresponding nonrandom, ferromagnetic, models have a first- 
order transition. (u-~3) In this paper we address the case of N-vector spins in 
one and two dimensions, where it is already known that there is no sym- 
metry breaking. 

We will indicate how fast the pair correlation functions decrease to 
zero. This problem has already been treated by Picco, (7) but using some 
ideas from former work, (8'9) we are able to extend his results considerably. 
For  the detailed estimates we use, similarly to Picco, ideas of Messager, 
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Miracle-Sole, and Ruiz ~.4) which have been developed to prove 
McBryan-Spencer bounds for nonrandom models with interactions of 
which the range becomes as long as possible. 

2. T H E  O N E - D I M E N S I O N A L  C A S E  

Let us consider Hamiltonians of the form 

H = -  ~ J ( i , j ) ] i - j l - ~ s i s j  (1) 
i , j  ~ 2 vd 

where the J(i, j)  are independent, identically distributed random variables 
with a distribution which has bounded support and for which F_J(i, j ) =  0 
and the si are plane rotors (two-component vectors). It is convenient to 
write 

J(i, j)  = J(i, j) l i -  Jl -~ (2) 

In this section we treat the one-dimensional case for which the proof works 
somewhat more smoothly and for which we get a power law decay with 
probability one (i.e., for almost all J configurations). 

T h e o r e m  1. If d =  1 and ~ > 1, there is a positive random variable 
f ({J})  which is finite J-almost surely, such that 

] (SoSN>({j}) ] ~</({j}) U-(=-1/2) 

Proof According to McBryan and Spencer, (15'16) for all {ai} 

Z(H') 
I <SoSN >1 ~< ~ expk -- (aN -- ao)] (3) 

where Z(H)  is the partition function corresponding to H, 

H' = - ~  J'(i, j) s~sj (4a) 
i , j  

and 

.l'(i, j)  = cosh(a i -  aj) J(i, j)  

The variational principle (in implies 

(4b) 

z( f l ' )  
~< exp( - < H '  - H > H , )  (5) Z(H) 
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where ( ' ) H ,  denotes the thermal expectation with respect to H'. This 
expression will be finite J-almost surely if 

l= I < H ' -  H)H.I < c~ (6) 

where (6) has to be understood uniformly in the volume. Technically, the 
proof of (6) is very similar to the estimate on the relative entropy in Ref. 9. 
Following Messager, Miracle-Sole, and Ruiz (to be referred as MMR),  (14~ 
we choose aj=a  U such that for j > 0  a j - a j  l=K/j .  Then 

(a N - a0) ~ K In N (7) 

To prove (6), we firstly note that just as in Ref. 9, we only have to consider 
the tail interactions (the short-range part can be treated along the lines of 
MMR). Hence we can assume that all the J'(i , j)  are small, whenever 
K<c~. 

By the Cauchy-Schwartz inequality 

P? I (H- -  H')H,I <<. ( ~ ( H -  H')2H.) ~72 (8) 

Now f ( H - H ' ) ~ ,  is a sum of terms of the form 

W <SiSj) H,<SkSI) H,[ J (l, j )  -- Y(i, j)] [Y'(k, l) - Y(k, /) ] (9) 

We rewrite 

(sisj exp[J'(i, j )  sis j ~- J'(k,  l) s~sl] ) Hb,~, 
~S iS j )H ' -  (10) 

(exp[J'(i, j) sisj+ J'(k,  l) s~sz] ) u~,k~ 

and do the same with (SkS~)H, 
The modified thermal average ( ' ) H ; ~  is obtained by removing the 

two interactions between the spins at i ~i~d j, c.q. at k, and l from the 
Hamiltonian. The advantage of using modified thermal averages is, that 
one may perform an average over the J(i, j) and J(k, l) when they are on 
the outside of the modified thermal average. It turns out that this allows 
one to extend the c a s e  ~ > 3 / 2  (4-7) to ~>  1 (s-~~ If i , j = k ,  l 

(9) ~< l i - j ] -2~[cosh(a i -  aj) - 1] 2 

If i , j r  we can develop (9) into an absolutely convergent Taylor 
expansion (9) in J'(i, j ) s i s j+ J'(k, l)sks~, making use of the representation 
(10), and we can term for term perform the average over J(i, j) and J(k, l). 
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Owing to the fact that ~J(i, j ) =  0, all the first-order terms disappear and 
we get 

(9) ~< C 1 [i-j[ 2" [k-  11-2~[coshZ(ai-- ay) - cosh(ai- ay)] 

x [coshZ(ak -- al) -- cosh(ak -- at)] (12) 

We notice that for large x coshZx,-~cosh 2x. 
Now we are able to apply the one-dimensional estimates of MMR. 

For the proofs and details we refer to Ref. 14. For  the diagonal terms in 
P~{~( [J'(i, j )  - J(i, j ) ]  sisj) H, }2 we have, using (11) 

]i--jl-2a[cosh(ai--a/)-- 1 1 2 4  C2 ~ Q~(n) (13) 
i , j  n - -  0 

where 

Q~(n)= ~ m-2~[cosh(an+m-a,,)-l] 2 
m=l 

= . . . +  . . . .  

m=l n+ l  
(14) 

The short-range part S~(n) is estimated by using cosh x - l  = O(x 2) for 
small x and the tail part T~(n) by (cosh x - 1 )  2= O(e 2x) for large x. 

The estimates of MMR imply that (13) is finite whenever 2K~< 2c~- 1 
or K<<,c~-I/2. For the nondiagonal terms, using (12) we get an upper 
bound of the form 

t1 , 
n=0 

which is also finite, because of the same estimate. This finishes the proof of 
(6) and hence of the theorem. | 

Remarks. (1) The extension to general N-vector models is 
straightforward. One can for example use the theorem for the first two 
directions and then use the fact that there is no breaking of the SO(N) 
symmetry to extend the result to the other N -  1 directions. 

(2) Unbounded distributions of the J'(i, j) can be treated too, as in 
Ref. 9. 

(3) For  the nonrandom case the McBryan Spencer bounds give 
( s o s N ) < N - ( ~ - I )  which is not an optimal value, since one has 
( S o S u ) ~ N  ~ in this case (the correlations decay at the same rate as the 
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interaction). (1.'19) For  random models this kind of results have been 
obtained in the case c~ > 3/2,/5/but for the case 3/2 > c~ > ! it is not known 
at present whether it is possible to improve on the McBryan Spencer 
bounds. 

3. THE TWO-DIMENSIONAl  CASE 

In two dimensions the reduction of an estimate for a random interac- 
tion with decay power c~ to an estimate for a nonrandom interaction with 
decay power 2e is also possible. However the precise results are weaker in 
this case. 

T h e o r e m  2. Let d = 2 ,  ~ > 2 ,  and 7 <  1. Then for all K > 0  there 
exists a sequence of random variables FN, such that 

- l n  I <S0SN) I • F  N 

and 

lim FN = K  in Le-sense 
N ~ c o  (ln N) ~ 

ProoL  We take for the {aj} in the McBryan-Spencer estimate (3) 
the choice of Picco, ajj I - a l ;  i _ 1= K/ j ( ln  + j ) l - ,~ ,  IJl = 1,..., N. 

Here IJl = J for all points on the boundary of the square with sides 
2j x 2j which has the origin at its center. With this choice 

(a N -- ao) ,.~ C3 K(ln N) "~ (16) 

Instead of (6) we derive in this case (see below) 

E t ( H - - H ' N ) n ' ~ I  ~<(E(H - r f '  \ 2  ~1/2<-0(( lnN)2, /  ,) 
, * * N / H N !  

From (16) and (17) we obtain by choosing R suitably 

( a N _  ao) _ (~ ( H _  H ~  \ tt,uj~l/2 
lim = K 

iv ~ ~ (In N) ~ 

(17) 

which gives the theorem. 
To derive (17) we apply exactly the same procedure as in the proof of 

Theorem 1 which replaces c~ by 2c~ in the estimates. The appropriate MMR 
estimate is a variation on the estimates on p. 92 of Ref. 14. Equation (13) 
becomes replaced by an upper bound of the form 5U v ,,= 1 nQ~#(n)  (and 
equation (15) by an upper bound of the form [52 nQ~,~(n)]2). 
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For the short-range part one obtains, using the notation of MMR, 

n(ln+n)~-7 1 { I K 
S~#(n)= ~ ~ cosh n ( ln+n) l_~-+- . .  

m = l  

+ ( n + m _ l ) [ l n + ( n + m _ l ) ] l _  ~ - 1  

" ( l n + ' ) ~ - ~ b K K 2  r n 2 _ u = O (  1 ) 
~< ~ [n(ln + n)l y]2 n2(ln + n)2-27 

m = l  

N 

nS~#(n) <<. O(ln N) 2~ - -1  

n = l  

(19) 

(20) 

for # > 3 which corresponds to 2~ > 4 or c~ > 2. The tail terms T, similar to 
MMR Section 3 satisfy 

• nT;#(n)< oo (21) 

Note here that [ i - j [  -~ cosh(ai-aj)~< [ i - j l  ( . . . .  ) asymptotically when 
[i - Jl --* oo for all K > 0 and e > 0. 

Equations (20) and (21) play the same role in this case as the 
finiteness of ~ - 1  Q~(n) [compare (13) and (14)] in the one-dimensional 
case. Together they give (17) and hence the theorem. | 

Remark. In fact the bounds (19) and (20) can be improved by taking 
(cosh x -  1)2~O(x4), but this is not possible for the nondiagonal terms, as 
one can see from (12). 

Comments .  In the two-dimensional case the result is somewhat 
weaker than one might hope for. Firstly the upper bound is not an almost 
sure property, and secondly we obtain not a power law decay but only an 
"almost power law" which holds true, however, at all temperatures. If we 
try to get a power law decay by putting in y = 1, we only get an upper 
bound on the correlation decay In [{S0SN)[ for which the average over the 
J(i, j)  converges. This does not exclude that with positive probability there 
is no decay at all. This upper bound gives a decay power which is propor- 
tional to (1/fl)2at low temperatures (or equivalently high fl). To get a 
stochastic convergence for the upper bound in some sense, we have to settle 
for something weaker than a power law. 

If we compare our results with those of Picco, (7) we extended (com- 
pare Refs. 8 and 9) his treatment from the case c~ > 3/2d to c~ > d. Moreover 
we obtained an explicit, T-independent value for the upper bounds on the 
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co r r e l a t i on  decay,  which  genera l izes  easi ly to N-vec to r  models .  However ,  in  

the t w o - d i m e n s i o n a l  p l a n e  ro t o r  case Picco o b t a i n s  a p r o b a b i l i t y  one  

result ,  whereas  o u r  T h e o r e m  2 shows c o n v e rg ence  o n l y  in  a n  L 2 sense. 
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